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1. Introduction. 

In a p r e v i o u s  p a p e r  [ 1] a m e t h o d  of so lv ing  the  p lane  e l a s t o - p l a s t i c  p r o b -  
l em was  d e s c r i b e d .  The  poin t  was  to d e t e r m i n e  the c o n t o u r  C tha t  s e p a -  
r a t e s  the  p l a s t i c  f r o m  the e l a s t i c  r e g i o n  s u c h  tha t  the s t r e s s e s ,  t ak ing  a s -  
s i gned  v a l u e s  on s o m e  c l o s e d  c u r v e  B and at  in f in i ty ,  a r e  c o n t i n u o u s  f u n c -  
t i o n s  t h r o u g h o u t  the  e x t e r i o r  of  the  b o u n d a r y  B. A n a l y t i c a l  m e t h o d s  fo r  the 
s o l u t i o n o f t h i s b o u n d a r y - v a l u e  p r o b l e m  can  be app l i ed  in s o m e  s p e c i a l  Rases ;  
g e n e r a l l y  h o w e v e r  on ly  n u m e r i c a l  m e t h o d s  lead  to the r e q u i r e d  r e s u l t s .  
By m e a n s  of  an i l l u s t r a t i v e  e x a m p l e  we wil l  go. in to  the  n u m e r i c a l  t r e a t -  
m e n t  of the  r e l a t i o n s  which  can  be u s e d  fo r  the  d e t e r m i n a t i o n  of the c o n -  
tour C. 

For the elastic region we have the basic Kolosov-Muskhelishvili equations 

o-x + o-y = 2 [ ? ( z )  + ? - ~  ] (1) 

d~ 
- (~x + 2iTxy = 2 ['~ + *(z) ] (2) Cyy 

The functions ? and @ of the complez variable z have the form 

2 ;r(l+~:) z 

K{X - iY) 1 it]+ ~o(z). (4) ~(z)  -- 2 . (1+~)  -~ + [ - 2 ~ +  

where (X, Y) is the resultant vector of the external forces applied to the 
boundary B, P=o-x ('oo), q=o-, (~), t=Txy (0o) and the functions ?o and r are 
represented by the series y 

and 

: k ( 5 )  
k=2 Z 

/3 k 
*o(Z) : ~ -~-,  (6) 

k=2 Z 

where the origin of the complex z-plane is assumed to lie in the interior 
of B. If? denotes the angle between the direction of the largest of the two 
principal stresses o-i' o-2 and the x-axis at some point (x,y) then 

o-x = o- + P cos 27 (7) 

o-y = o-- p cos 27 (8) 

~'xy = p s in  27, (9) 

w h e r e  fo r  b r e v i t y  we have  put 

o- : �89 (o- 1 + % )  
p : �89 ( %  - %). 
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In the plastic region some plasticity-condition defining p as a function of 
must be satisfied. This condition yields two hyperbolic differential equa- 

tions for the quantities cr and ~. For the characteristics we have the differ- 
ential equation 

d y  (I0) 
= t g /~ ,  

where ~ = ~ • 3' o~ denoting the supplement of the angle between the normal 
at the envelope of the circles with radius p(~) and the (;-axis in Mohrls 
diagram. The characteristic equations have the simple form: 

a~ + a~ - 0 (ii) 

D~i 3~1 

_ 3r = 0 ,  (12) 

where 

~(oJ = f sin -~- d~. (13) 

2. The numerical procedure. 

Let 

c ~k  
z = ~ (~)  : ~ +  ~ ~ (14)  

k=O k 

be a conformal mapping that maps the exterior of the (unknown) contour 
C in the z-plane onto the interior of the unit-circle in the complex ~-plane 
such that ~(o) = 0o. Now the left members of the Kolosov-Muskhelishvili 
equations are taken as to be determined from the assigned values on the 
boundary B by the method of characteristics in the plastic region whereas 
the functions ~o and ~o refer to the elastic region. In this sense the equa- 
tions (i) and (2) are only valid on the contour C. Thus the point is to de- 
termine a mapping (14) such that both members of the equations (i) and 
(2) are identical on the unit-circle in the ~-plane. 
Suppose the left members of the equations (i) and (2) to be mapped on the 
Fourier- series 

+ r ---> F({~) = ~ C r (15) 
x y n=-~ n 

a n d  

- ~ - 2 i T  --*  G ( ~ )  = ~ d n ,  (16 )  
y x xy n - -  ~ n 

where ~ = e i~ . If in the Kolosov-Muskhelishvili equations 

k=O k ( 1 7 )  
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a n d  

~D(~) = ~ b ~ k  (18) 
k=O k ' 

v 
then we have the following relations for the coefficients in the expansion 
of the function t0(~): 

fk = E m g  + c -  I2 = O, k O, 1 m Tin+k_ 1 Xk-2 m = l  m ~ m + k - l ' T ' m  ) in-- 
(19) 

w h e r e  

2 a  n = On, n >/1'  

2X = d n ,  n >i 1 n 

2X = d + p - q + 2it 
o o 

2X = d + 2 ~ a  . 
-I -I 1 

Moreover we have the boundary-condition 

c : p + q.  (20)  
o 

Assuming central symmetry we have that the coefficients Tn, To, T 4 . . . . . . . . .  ; 
al,a3,a 6 ....... and X~ ,kl k 3,k 5 ...... vanish. In caseVof ~ymmetry with 
respect to the x-axis m the z-plane the coefficients T k are real. Central 
symmetry and symmetry with respect to the x-axis imply symmetry with 
respect to the y-axis. 
In order to solve the problem terms of order higher than some n in the 
expansion of the function ~(~) are neglected. To some given initial set of 
variables c, T o , T1 ......... Tn corresponds a transformation-function t01(~ ) 
that maps a curve C 1 onto the unit-circle in the complex ~-plane. Appli- 
cation of the equations (Ii) and (12) yields stresses in the region bounded 
by C 1 , especially on the contour C1. The mapping-function ~i defines there- 
fore the stresses (~• Cry and ~rxy on the unit-circle in the complex ~-plane. 
Thus from an expansion of the functions cr x + cry and ~y - cz• - 2i~ X in a 
Fourier-series ECkCrk and ~dk(X k coefficients ck and d k are available so y that 
the functions fk defined by (19) can be calculated. For the solution of the 
problem the functions fk must vanish. Therefore one can find this solution 
by minimizing the function 

S = E fkfk  (21)  

subject to the condition (20); starting from the initial point on the surface 
S one has tochange the variables e, To, TI ........ Tn such that S decreases. 
Repetition of this process will eventually lead to some point from which no 
decrease of S is possible wthin the limits of accuracy assigned. 
Let for example the boundary B an ellipse with major axis 2aand minor axis 
2band let for simplicity the plasticity-condition be 

p = k,  ( 22 )  

where k is a constant. At the boundary B to which a normal loading f is 
applied we have the stresses 
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(71 = 2 k +  f 

~2 = f  

and therefore 

(7 = k+ f. (23) 

From (i0) we have for the characteristics in the plastic region the differ- 
ential equation 

d y  a 4 H-~ = t g u  = t g  (~ + ~ )  = t g  ( ~ + )  (24) 

The characteristics starting from the points 

x = a c o s  ~ = a c o s  k A ~  

y = b s i n  a = b s i n  k A ~  
,k = 0,1,2 ....... (0 < ~ < 2~r) (25) 

of the ellipse constitute an orthogonal net. Along these characteristics we 
have the characteristic equations 

where 

~-~8-i((7 + 2p~) = 0 

7~ (-or + 2 0 ~ )  = 0 
2 

2r 
- i t  1 = ~ + ~  

(26) 

(27) 

. 2 = ~ - ~  �9 

The function ~1 = (7 + 2p9 does not change in a characteristic direction 
and the function ~2 = -(7 + 2p~ does not change in a characteristic direc 1 
tion ~9. Therefore in some net-point where two characteristics intersect 
we have for the quantities ~ and (7 the relations 

= ~i + ~ 2  (28)  
4 p  

~I - ~2 (29) (7 = 2 " 

From the values of e and ~ in these net-points we can evaluate ~ and (7 at 
the nodes (xi,Y~) of a square mesh which is constituted by equidistant lines 
parallel to the J x- and y-axes. If . and (7.. denote the values of ~ and 
at these nodes then we can form ~e l~ matrices ~ and E with elements ~ij 
and ~ij respectively. From these matrices we find ~ and ~ at some point 
(x,y) in the plastic region by quadratic interpolation; for 

x i .  z ~< x 4 x 

a n d  

Y j - I <  Y ..< Yj 
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we find ~(x ,y)  f r o m  the i n t e r p o l a t i o n - f o r m u l a  

117 

1 
~(x ,y)  = ~-~ [%ij (x-xi-1)(Y-Yj-1)  + 9i-l.j-1 (X-Xi)(Y-Yj) - ~i.j-1 (x-xi-1)(Y-Yj) " 

-~i_l,j(x-xi)(Y-Yj_l ) ] (30) 

and a (x ,y )  f r o m  the f o r m u l a  

1 
a(x ,y )  : - ~ [ ( 7 i j ( x - x i .  1 )(Y-Yj-1 ) + ai-l . j-1 (x-xi)(Y-Yj) - ~ (x-xi-1)(Y-YJ) - 

-(Yi_l,j(x-xi)(y-yj_l ) ]  , (31) 

where h is the size of the square mesh. It is observed that to some giv- 
en plasticity-condition and prescribed boundary-values of ~ and ~ at B there 
correspond fixed matrices ~ ,and E. 
From (15) we find that 

ikO ~ -ikO 
+ (Y = C + C k e + C k e 

(Yx y o k'l k=l 

= c o + ~ c k (coskO + isinkO) + ~ ~k (coskO - i s ink0) .  
ksl k=l 

Because of the central symmetry and the symmetry with respect to the 
axes the coefficients ci, cs, c 5 ....... vanish and ~2k = C2k" Therefore 

~x + ay = Co + 2 ~ C2k cos 2kO. 
k-l 

(32) 

As for (16) we deduce from symmetry-considerations that the coefficients 
d2k+l vanish and that the remaining coefficients d2k are real so that 

~ = d + ~ (d2k + d 2  k ) cos  2kO. (33) 
y x o kzl 

and 

-2~ = E (d2k - d_2k) s in 2kO. (34) 
xy k--I 

From (30) and (31) we find for certain values of the variables c ,T 2 ........ 
Tn the quantities ~ and ~ at N points ~ = el~ where 'TI 

J 

8j= j. _27r , j = 0, i,2,......, N-I (35) 
N 

on the  u n i t - c i r c l e  in the  ~ -p l ane .  F r o m  (7), (8) and (9) we then  obta in  the  
lef t  m e m b e r s  of  the  r e l a t i o n s  (32), (33) and (34) at  the  po in t s  ~ .  Thus  
f r o m  the  r e l a t i o n s  
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1 N - I  

= _ ~ (o" x + (~y)j C~ N j=0 

1 N - I  
=- P" (~x + cos 2k0j O2k N j=O Oy)j 

1 N-I _ (~). 
= _  ~ (~y 

d~ N j=o x j 

NJ_-o [(% -  x)j cos 2k0- ,  2(  y)j sin 2k0j] 

coefficients c k and d k are available and the function S can be calculated. 
As for the condition (20) one may add the term ff" to the sum S, where 

f = c  o - p -  q .  

It is observed that making use of symmetry-properties of the functions in- 
volved one can restrict himself to only the first quadrant in the z-plane 
and moreover effect considerable improvements in the calculation-proce- 
dure [ 2 ] . 
As regards the minimization of the function S there are several optimiza- 
tion-techniques available. Application of some gradient-technique requires 
the existence ofs gradient-vectorVS. However generally S is not differ- 
entiable and therefore one might better apply an optimizationtechnique like 
Rosenbrock's method [ 3 ] . 
Finally it is remarked that the rate of convergence strongly depends on 
the initial[ set of variables c, T1, T3 ...... Tn from which the process is 
started. Now if the boundary B is a 
circle with radius R, the contour C 
is an ellipse ~.--------~. 

) ,, 
z = c + ~ '  ' l " - ~ \  \ 

w h e r e  

a n d  

1 
c = Re 2--k [ P-~-f-k] 

k " .__.Y / 

I 
f = 0, p = 2 �89 q = 3 

U - D 

�9 Fig. I. 

Therefore if the boundary B is an ellipse with semi-axes R and R - AR 
this function may be taken as a first approximation ~01(~) of the mapping- 
-function z = w(~) and thus the ellipse with axes 2c(i+~) and 2c(i-~) is a 
first approximation C1 of the contour C. From this initial approximation 
the minimization of the function S should be started. Then the solution of 
this problem may again be used as a first approximation for the next prob- 
lem, the boundary B being an ellipse with semi-axes R and R - 2AR. Going 
on in this way one starts the minimization of the function S, the boundary B 
being an ellipse with axe s 2a and 2 b' from the solution of the preceding problem 
where the boundary B is an ellipse with axes 2a and 2(b+Ab); the start of the 
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/ 

\ 

f 

J 
J 

N 

J 

f r - " "  \ 
k ~ . . . ~  ) 

f = O, p = 2�89 q = f = O, p = 2�89 

Fig. 2. Fig. 3. 

next calculation is the solution of the preceding one. 

q = 3  
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